\qquad

MILESTONE REVIEW Coach Book -- Unit 5

Date \qquad Period \qquad
Graph the image of the figure using the transformation given. Then write the vertices of the image.

1) rotation 90° clockwise about the origin

2) translation: 3 units right and 4 units down

3) rotation 180° about the origin

4) reflection across $x=1$

Write the vertices of the image after the given transformation.

5) reflection across the y-axis
$A(1,-1), B(-2,3), S(3,3), V(4,-2)$
6) rotation 90° counterclockwise about the origin $G(-1,-4), C(1,1), F(3,0), Y(3,-5)$

Find the coordinates of the vertices of each figure after the given transformation.
7) reflection across the x-axis
$S(-5,-4), B(-2,0), T(0,-3)$
A) $B^{\prime}(0,0), T^{\prime}(-2,-3), S^{\prime}(3,-4)$
B) $B^{\prime}(-2,0), T^{\prime}(0,3), S^{\prime}(-5,4)$
C) $B^{\prime}(0,2), T^{\prime}(3,0), S^{\prime}(4,5)$
D) $B^{\prime}(0,-2), T^{\prime}(-3,0), S^{\prime}(-4,-5)$
8) reflection across $y=x$

$$
Q(1,0), Y(0,4), N(1,4), E(3,1)
$$

A) $Y^{\prime}(-4,0), N^{\prime}(-4,-1), E^{\prime}(-1,-3), Q^{\prime}(0,-1)$
B) $Y^{\prime}(0,0), N^{\prime}(1,0), E^{\prime}(3,3), Q^{\prime}(1,4)$
C) $Y^{\prime}(4,0), N^{\prime}(4,1), E^{\prime}(1,3), Q^{\prime}(0,1)$
D) $Y^{\prime}(0,-4), N^{\prime}(1,-4), E^{\prime}(3,-1), Q^{\prime}(1,0)$
9. Point P at $(-4,3)$ is translated to form image, point P^{\prime}, at $(6,1)$. Write a function to represent the translation. If point $R(-5,6)$ and point $S(1,2)$ are also translated using the rule, what will be the coordinates of their images? R^{\prime} \qquad S' \qquad
10.

Quadrilateral JKLM and its reflected image are shown. Which statement is true of these two quadrilaterals?
a) The image shows the result of a reflection across the x-axis.
b) The path that point L takes across the line of reflection is perpendicular to the line of reflection.
c) Each point (x, y) on quadrilateral JKLM maps to point $(-y, x)$ on its image.
d) Corresponding sides of quadrilateral JKLM and its image are parallel.
11. Which sequence of transformations can be used to map $\triangle M N P$ onto $\Delta M^{\prime} N^{\prime} P^{\prime}$?

A. dilation by a factor of $1 / 2$ followed by a translation 4 units down
B. dilation by a factor of $1 / 2$ followed by a 270° rotation
C. vertical shrink by a factor of $1 / 2$ followed by a translation 4 units down
D. vertical shrink by a factor of $1 / 2$
followed by a 270° rotation
12. $\triangle A B C$ is transformed to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which statement is NOT true?

A. This transformation shows the image of $\triangle A B C$ after a 270° rotation about the origin
B. This transformation preserved the distances and angle measure of the original figure.
C. Sides $\overline{A B}$ and $\overline{A^{\prime} B^{\prime}}$ lie on lines that are parallel to one another.
D. Sides $\overline{B C}$ and $\overline{B^{\prime} C^{\prime}}$ lie on lines that are perpendicular to one another.

