NAME: Re Unit 3 Review

Determine whether each relation is a function.

2.

For each graph, determine the graph is increasing or decreasing and its end behavior.

The graph is always Increasing

The graph

The graph ____ on the right.

The graph is always decreasino

The graph ______ on the left.

The graph <u>falls</u> on the right.

6. Identify the x and y intercepts.

[x	-24	-12	0	12	24
Ī	f(x)	-8	-6	-4	-2	0

x - intercept: 24

y – intercept: ——

The highest possible grade for a report is 100. Each day the report is late, the teacher deducts 10 points.

m=	-10_
m=	40

b=100

1 - F	# # T				
Days Late, x	0	1	2	3	4
Starting	100	90	80	70	60
Grade, $g(x)$		0	10	10	10

Could the situation be modeled by a linear or exponential function? LINEA

Write a function that could be used to model the relationship.

U= HOX TID

The equation $A(t) = 900(0.85)^t$ represents 8. the value of a motor scooter t years after it was purchased. Which statement is also true of this situation?

- a) When new, the scooter cost \$765.
- b) When new, the scooter cost \$900.
- c) The scooter's value is decreasing at a rate of 85% each year.
- d) The scooter's value is decreasing at a rate of 0.015% each year.

9.

Which statement about this function is not true?

- Its domain is $\{-4 \le x \le 6\}$.
- Its range is $\{-1 \le y \le 4\}$.
- It has a y-intercept at (0, 2).
- It has a maximum of 6. max=4

- a) Determine the average rate of change between (0, 2) and (1, 4).
- b) Determine the average rate of
- change between (1, 4) and (2, 10). m=10-4=10=6
- 11. The formula $a_n = 10 - 4n$ describes an arithmetic sequence. What are the first four terms of the sequence?

(a)
$$6, 2, -2, -6$$

b) $6, 2, 0, -2$
Q=10-4(1)

e) 10, 6, 2, -2
$$a_2 = 10^{-4}(2)$$

e) 14, 18, 22, 26. $a_2 = 10^{-8} = 2$

12. Which formula can be used to find the nth term in a sequence below?

128, 96, 72, 54,
$$r = \frac{96}{128}$$

(a)
$$a_n = 128 \left(\frac{3}{4}\right)^{n-1}$$
 $r = 3$

b)
$$a_n = 128 \left(\frac{4}{3}\right)^{n-1}$$

b)
$$a_n = 128 \left(\frac{4}{3}\right)^{n-1}$$
 $a_n = a_1 \cdot r^{n-1}$

c)
$$a_n = 128 \left(\frac{3}{4}\right)^n$$

c)
$$a_n = 128 \left(\frac{3}{4}\right)^n$$
 $a_n = 128 \left(\frac{3}{4}\right)^{n-1}$

d)
$$a_n = 128 \left(\frac{4}{3}\right)^n$$

13. Given the sequence

Which of the following would be the explicit formula to represent the sequence?

a)
$$a_n = -40 + 7n$$
 $a_n = -40 + 7n$ $a_7 = 16384$

b)
$$a_n = -33 + 7n$$

b)
$$a_n = -33 + 7n$$
 $a_n = -4777n$

14.

c)
$$a_n = -40 - 7n$$

Find the 7th term in the sequence -1, 4, -16, 64, ...

a)
$$a_7 = -16384$$

b)
$$a_7 = 4096$$

$$a_n = -40+(n-1)7$$
 (c) $a_7 = -4096$

Solve each equation by using the given graph.

15.
$$-\frac{3}{2}x - 5 = -5x + 2$$

g(x) = -5x + 2

16:
$$\left(\frac{1}{2}\right)^{x} - 5 = -3$$

$$f(x) = \left(\frac{1}{2}\right)^{x} - 5 = -3$$

$$g(x) = -3$$

17. Solve the equation for x by using the given table.

X	$f(x) = \frac{1}{2}x + 1$	$g(x) = \frac{3}{2}x - \frac{1}{2}$
0	1	$-\frac{1}{2}$
$\frac{1}{2}$	<u>5</u>	$\frac{1}{4}$
1	$\frac{3}{2}$	1
3 2	7/4	7 4
2	2	5 2

18. Define two functions and graph them on the coordinate plane to solve for x.

$$f(x) = X - 3$$

$$g(x) = -2x + 6$$

Graph each function g on the coordinate plane below it. Classify each graph of g as either a vertical stretch or a vertical shrink of the graph of f. Then identify the factor.

19.
$$g(x) = 2x - 6$$

20.
$$g(x) = \frac{1}{2}(2^x)$$

X y =0.125 -2 =0.125 -1 =0.25 -1 =0.5 -2 = 0.5

transformation: vertical Stretch

factor:

transformation: vertical <u>shrink</u> factor:

21. The graphing calculator screen below shows f(x) = -3x - 4 and its reflection g. Which is **not** true of the functions?

A.
$$q(x) = f(-x)$$

- **B.** Function f was reflected across the y-axis to form g.
- Both f and g have the same v-intercept.
- \bigcirc Both f and g have the same slope.