Coordinate Algebra

MILESTONE REVIEW-Coach Book

NAME: \qquad
Unit 3 Review
Determine whether each relation is a function.
1.

2.

3.

For each graph, determine the graph is increasing or decreasing and its end behavior.
4.

The graph is always \qquad .

The graph \qquad on the left.

The graph \qquad on the right.
5.

The graph is always \qquad .

The graph \qquad on the left.

The graph \qquad on the right.
6. Identify the x and y intercepts.

x	-24	-12	0	12	24
$f(x)$	-8	-6	-4	-2	0

7. The highest possible grade for a report is 100. Each day the report is late, the teacher deducts 10 points.

Days Late, x	0	1	2	3	4
Starting Grade, $g(x)$	100	90	80	70	60

Could the situation be modeled by a linear or exponential function? \qquad
8. The equation $A(t)=900(0.85)^{t}$ represents the value of a motor scooter t years after it was purchased. Which statement is also true of this situation?
a) When new, the scooter cost $\$ 765$.
b) When new, the scooter cost $\$ 900$.
c) The scooter's value is decreasing at a rate of 85% each year.
d) The scooter's value is decreasing at a rate of 0.015% each year.
9.

Which statement about this function is not true?

A. Its domain is $\{-4 \leq x \leq 6\}$.
B. Its range is $\{-1 \leq y \leq 4\}$.
C. It has a y-intercept at $(0,2)$.
D. It has a maximum of 6 .
11. The formula $a_{n}=10-4 n$ describes an arithmetic sequence. What are the first four terms of the sequence?
a) $6,2,-2,-6$
b) $6,2,0,-2$
c) $10,6,2,-2$
d) $14,18,22,26$
13. Given the sequence
-40, - 33, - 26, - 19,....
Which of the following would be the explicit formula to represent the sequence?
a) $a_{n}=-40+7 n$
b) $a_{n}=-33+7 n$
c) $a_{n}=-40-7 n$
d) $a_{n}=-47+7 n$
10.

a) Determine the average rate of change between $(0,2)$ and $(1,4)$.
b) Determine the average rate of change between $(1,4)$ and $(2,10)$.
12. Which formula can be used to find the nth term in a sequence below?
$128,96,72,54, \ldots$.
a) $a_{n}=128\left(\frac{3}{4}\right)^{n-1}$
b) $a_{n}=128\left(\frac{4}{3}\right)^{n-1}$
c) $a_{n}=128\left(\frac{3}{4}\right)^{n}$
d) $a_{n}=128\left(\frac{4}{3}\right)^{n}$
14. Find the $7^{\text {th }}$ term in the sequence $-1,4,-16,64, \ldots$
a) $a_{7}=-16384$
b) $a_{7}=4096$
c) $a_{7}=-4096$
d) $a_{7}=16384$

Solve each equation by using the given graph.
15.
$-\frac{3}{2} x-5=-5 x+2$

$$
x=
$$

\qquad
16.
$\left(\frac{1}{2}\right)^{x}-5=-3$

17. Solve the equation for x by using the given table.

$$
\frac{1}{2} x+1=\frac{3}{2} x-\frac{1}{2}
$$

x	$f(x)=\frac{1}{2} x+1$	$g(x)=\frac{3}{2} x-\frac{1}{2}$
0	1	$-\frac{1}{2}$
$\frac{1}{2}$	$\frac{5}{4}$	$\frac{1}{4}$
1	$\frac{3}{2}$	1
$\frac{3}{2}$	$\frac{7}{4}$	$\frac{7}{4}$
2	2	$\frac{5}{2}$

$$
x=
$$

\qquad
18. Define two functions and graph them on the coordinate plane to solve for x .

Graph each function \boldsymbol{g} on the coordinate plane below it. Classify each graph of \boldsymbol{g} as either a vertical stretch or a vertical shrink of the graph of \boldsymbol{f}. Then identify the factor.
19. $g(x)=2 x-6$

transformation: vertical factor: \qquad
\qquad
21. The graphing calculator screen below shows $f(x)=-3 x-4$ and its reflection g. Which is not true of the functions?

A. $g(x)=f(-x)$
B. Function f was reflected across the y-axis to form g.
C. Both f and g have the same y-intercept.
D. Both f and g have the same slope.

