Coordinate Algebra MILESTONE REVIEW—Coach Book

NAME: _____

Unit 3 Review

Determine whether each relation is a function.

For each graph, determine the graph is increasing or decreasing and its end behavior.

The graph is always _____

The graph _____ on the left.

The graph _____ on the right.

The graph _____ on the left.

The graph _____ on the right.

x - intercept:_____

6. Identify the x and y intercepts.

x	-24	-12	0	12	24
f(x)	-8	-6	-4	-2	0

 The highest possible grade for a report is 100. Each day the report is late, the teacher deducts 10 points.

Days Late, x	0	1	2	3	4
Starting	100	90	80	70	60
Grade, $g(x)$					

Could the situation be modeled by a linear or exponential function?

Write a function that could be used to model the relationship.

y – intercept: _____ 8. The equation $A(t) = 900(0.85)^t$ represents the value of a motor scooter *t* years after it

The equation $A(t) = 900(0.85)^{t}$ represents the value of a motor scooter t years after it was purchased. Which statement is also true of this situation?

a) When new, the scooter cost \$765.

b) When new, the scooter cost \$900.

c) The scooter's value is decreasing at a rate of 85% each year.

d) The scooter's value is decreasing at a rate of 0.015% each year.

Which statement about this function is not true? $\begin{array}{c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

9.

a) Determine the average rate of change between (0, 2) and (1, 4).

b) Determine the average rate of change between (1, 4) and (2, 10).

- 11. The formula $a_n = 10 4n$ describes an arithmetic sequence. What are the first four terms of the sequence?
 - a) 6, 2, -2, -6
 - b) 6, 2, 0, -2
 - c) 10, 6, 2, -2
 - d) 14, 18, 22, 26

12. Which formula can be used to find the *n*th term in a sequence below?

128, 96, 72, 54,
a)
$$a_n = 128 \left(\frac{3}{4}\right)^{n-1}$$

b) $a_n = 128 \left(\frac{4}{3}\right)^{n-1}$
c) $a_n = 128 \left(\frac{3}{4}\right)^n$
d) $a_n = 128 \left(\frac{4}{3}\right)^n$

13. Given the sequence

- 40, - 33, - 26, - 19,....

Which of the following would be the explicit formula to represent the sequence?

- a) $a_n = -40 + 7n$
- b) $a_n = -33 + 7n$
- c) $a_n = -40 7n$
- d) $a_n = -47 + 7n$

- ^{14.} Find the 7^{th} term in the sequence -1, 4, -16, 64, ...
 - a) $a_7 = -16384$ b) $a_7 = 4096$ c) $a_7 = -4096$
 - d) $a_7 = 16384$

Solve each equation by using the given graph.

17. Solve the equation for x by using the given table.

x	$f(x)=\frac{1}{2}x+1$	$g(x)=\frac{3}{2}x-\frac{1}{2}$
0	1	$-\frac{1}{2}$
$\frac{1}{2}$	$\frac{5}{4}$	$\frac{1}{4}$
1	3 2	1
32	<u>7</u> 4	$\frac{7}{4}$
2	2	5 2

18. Define two functions and graph them on the coordinate plane to solve for x.

Graph each function g on the coordinate plane below it. Classify each graph of g as either a vertical stretch or a vertical shrink of the graph of f. Then identify the factor.

21. The graphing calculator screen below shows f(x) = -3x - 4 and its reflection *g*. Which is **not** true of the functions?

- $A. \quad g(x) = f(-x)$
- **B.** Function *f* was reflected across the *y*-axis to form *g*.
- **C.** Both f and g have the same y-intercept.
- D. Both f and g have the same slope.