\qquad
Write the equation for each table.

1) What is a relation? 2. What is a function?	3. What are the coordinates of point	4. In what quadrant is point N located? 5. Is point M on the x -axis or the y -axis? 6. Is the relation a function? 7. What is the domain and range? 8. In what quadrant is point K located?
x y -9 5 -5 10 -1 15 Domain \qquad Range \qquad Is it a function? \qquad	5. Does this graph have an x intercept? If yes, what is it? Does it have a y-intercept? If yes, what is it? Is this relation a function?	6. What is the x-intercept? Label it on the picture and write the ordered pair. What is the y-intercept? Label it on the picture and write the ordered pair.

7. Circle the relations that are functions.
6)

7)

8)

9)

10)

11) Draw the coordinate plane and label the quadrants, the origin, and the x and y axis.
12) Write the steps on how to find the x-intercept.
13) Write in your own words how to find the y-intercept.
$A(2,7) \quad B(5,0) \quad C(7,9) \quad D(0,1) \quad E(-9,0) \quad F(8,-9) \quad G(0,8) \quad H(4,8) \quad J(4,0) \quad K(9,0) \quad L(0,9) \quad M(12,0) \quad N(-8,0) \quad K(0,-6)$
14) Which of the ordered pairs above are x - intercepts?
15) Which of the ordered pairs above are y-intercepts.

$$
\begin{array}{l|l|l}
\hline g(x)=-8 x+3 & h(x)=x^{2}-4 & f(x)=x^{3}+x \\
\hline
\end{array}
$$

Evaluate the following functions.

16) $g(5)$	17) $\mathrm{h}(-4)$	$18) \mathrm{h}(4)$
ordered pair	ordered pair	
19) f(-5)	20) g(-6)	ordered pair

