Solving Two-Step and Multi-Step Equations

Warm Up Lesson Presentation Lesson Quiz

Warm Up

Evaluate each expression.

1. $9-3(-2) 15$
2. $3(-5+7) 6$
3. $12\left(\frac{3+(-7)}{12}\right)-4$
4. $26-4(7-5) 18$

Simplify each expression.
5. $10 c+c 11 c$
6. $8.2 b+3.8 b-12 b 0$
7. $5 m+2(2 m-7) 9 m-14$
8. $6 x-(2 x+5) 4 x-5$

Solving Two-Step and Multi-Step Equations

Example 1: Solving Two-Step Equations

Solve $18=4 a+10$.

$$
\begin{array}{rlrl}
18 & =4 a+10 & \begin{array}{l}
\text { First a is multiplied by 4. Then } 10 \text { is } \\
\text { added. Work backward: Subtract } 10 \\
\text { from both sides. }
\end{array} \\
8 & =4 a & -10 \\
\frac{8}{4} & =\frac{4 a}{4} & & \begin{array}{ll}
\text { Since a is multiplied by 4, divide both }
\end{array} \\
2 & =a & \text { sides by 4 to undo the multiplication. }
\end{array}
$$

Solving Two-Step and Multi-Step Equations

Example 2: Solving Two-Step Equations

Solve 5t-2 = -32.

$$
\begin{array}{rlr}
5 t-2 & =-32 & \begin{array}{l}
\text { First } t \text { is multiplied by 5. Then } 2 \text { is } \\
\text { subtracted. Work backward: Add } 2 \\
5 t \\
\text { to both sides. }
\end{array} \\
\frac{5 t}{5} & =\frac{-30}{5} & \begin{array}{l}
\text { Since } t \text { is multiplied by 5, divide both } \\
\text { sides by } 5 \text { to undo the multiplication. }
\end{array} \\
t & =-6 &
\end{array}
$$

Solving Two-Step and Multi-Step Equations

Example 3: Solving Two-Step Equations That Contain

 FractionsSolve $\frac{y}{8}-\frac{3}{4}=\frac{7}{12}$.
Method 1 Use fraction operations.

$$
\left.\begin{array}{ll}
\frac{y}{8}-\frac{3}{4}=\frac{7}{12} & \begin{array}{c}
\text { Since } \frac{3}{4} \text { is subtracted from } \frac{y}{8} \text {, add } \frac{3}{4} \text { to } \\
\text { both sides to undo the subtraction. }
\end{array} \\
+\frac{3}{4} & +\frac{3}{4}
\end{array} \quad \begin{array}{l}
\text { Since } y \text { is divided by } 8 \text {, multiply both } \\
\frac{y}{8}
\end{array}=\frac{3}{12} \quad \begin{array}{l}
\text { sides by } 8 \text { to undo the division. }
\end{array}\right] \begin{array}{ll}
8\left(\frac{y}{8}\right)=8\left(\frac{16}{12}\right) &
\end{array}
$$

3.1 Solving Two-Step and Multi-Step Equations

Example 3 Continued

Solve $\frac{y}{8}-\frac{3}{4}=\frac{7}{12}$.
Method 1 Use fraction operations.

$$
\begin{aligned}
8\left(\frac{y}{8}\right) & =8\left(\frac{16}{12}\right) \\
y & =\frac{8 \cdot 16}{12} \quad \text { Simplify. } \\
y & =\frac{32}{3}
\end{aligned}
$$

3.1 Solving Two-Step and Multi-Step Equations

Example 4: Solving Two-Step Equations That Contain

 FractionsSolve $\frac{2}{3} r+\frac{3}{4}=\frac{7}{12}$.
Method 1 Use fraction operations.

$$
\begin{aligned}
\frac{2}{3} r+\frac{3}{4} & =\frac{7}{12} \\
-\frac{3}{4} & \begin{array}{l}
\text { Since } \frac{3}{4} \text { is added to } \frac{2}{3} r, \text { subtract } \frac{3}{4} \\
\text { from both sides to undo the addition. }
\end{array} \\
\frac{3}{3} r & =-\frac{1}{6}
\end{aligned} \begin{aligned}
& \text { The reciprocal of } \frac{2}{3} \text { is } \frac{3}{2} .
\end{aligned}
$$

3.1 Solving Two-Step and Multi-Step Equations

Example 4 Continued

Solve $\frac{2}{3} r+\frac{3}{4}=\frac{7}{12}$.
Method 1 Use fraction operations.

$$
\begin{aligned}
\left(\frac{3}{2}\right) \frac{2}{3} r & =\left(\frac{3}{2}\right)\left(-\frac{1}{6}\right) \\
r & =-\frac{3 \cdot 1}{2 \cdot 6} \\
r & =-\frac{1}{4}
\end{aligned}
$$

Solving Two-Step and Multi-Step Equations

Example 5: Simplifying Before Solving Equations

Solve 8x-21+5x=-15.

$$
8 x-21-5 x=-15
$$

$8 x-5 x-21=-15$ Use the Commutative Property of Addition.

$$
3 x-21=-15 \text { Combine like terms. }
$$

$+21+21$ Since 21 is subtracted from $3 x$, add 21 $3 x=6 \quad$ to both sides to undo the subtraction.
$\frac{3 x}{3}=\frac{6}{3} \quad$ Since x is multiplied by 3 , divide both sides by 3 to undo the multiplication. $x=2$

Solving Two-Step and
 Multi-Step Equations

Example 6

Solve $4(x-2)+\mathbf{2 x}=\mathbf{4 0}$
$4(x-2)+2 x=40$
$(4)(x)+(4)(-2)+2 x=40$
Distribute 4 on the left side.

$$
\begin{array}{r}
4 x-8+2 x=40 \\
4 x+2 x-8=40 \\
6 x-8=40 \\
+8=+8 \\
\hline 6 x=48
\end{array}
$$

Simplify.

$$
\begin{aligned}
\frac{6 x}{6} & =\frac{48}{6} \\
x & =8
\end{aligned}
$$

Commutative Property of Addition.
Combine like terms.
Since 8 is subtracted from $6 x$, add 8 to both sides to undo the subtraction.
Since x is multiplied by 6 , divide both sides by 6 to undo the multiplication.

